

Course Title: Classical Mechanics -1

Course Code: PHYS26221

Program: Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 3

Last Revision Date: 25 July 2023

2023

P-153

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode	3
۳. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
1. References and Learning Resources	6
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	7

A. General information about the course:

1. Course Identification

1. Credit hours: 3

2. (Course type				
Α.	University 🗆	College	Department⊠	Track	Others□
В.	Required 🖂	Elective			
3. Level/year at which this course is offered: 3 rd Level / 2 nd year					
4. Course general Description					

This course acquires basic knowledge theory and the main experiences of classical mechanics. Concerned with the study of the movement of linear and circular particles, the causes of motions, the law of energy conservation, law of momentum conservation and rotation of a rigid object.

5. Pre-requirements for this course:

NA

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Recognize the fundamental of classical mechanics.

2. Teaching mode

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	3	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

P. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods	
1.0	Knowledge and understanding				
1.1	Define Newton's laws for linear and circular motion.	K.1			
1.2	Describe work and energy theorem.	K.1	Lectures Solve problems	Written test Reports Homework	
1.3	Recognize linear momentum and collisions.	K.1	Solve problems	Quizzes	
1.4	Identify rotation of a rigid object.	K.1			
2.0	Skills				
2.1	Apply Newton's laws for linear and circular motion.	S.1			
2.2	Solve problems in work and energy theorem.	S.1	Lectures	Written test Reports Homework Quizzes	
2.3	Solve problems in linear momentum and collisions.	S.1	Solve problems.		
2.4	Apply laws of rotation of a rigid object.	S.1			
3.0	Values, autonomy, and responsib	ility			
3.1	Exhibit self-learning skills independently.	V.2	Self-learning	Reports Presentation	

C. Course Content

No	List of Topics	Contact Hours
----	----------------	---------------

1.	Motion in Two and Three Dimensions1. The Position, Velocity, and Acceleration Vectors.2. Two-Dimensional Motion with Constant Acceleration.3. Projectile Motion.	4.5
2.	4. Particle in Uniform Circular Motion.5. Tangential and Radial Acceleration.6. Three-Dimensional Motion.	4.5
3.	The Laws of Motion1. Newton's First Law and Inertial Frames.2. Newton's Second Law.3. The Gravitational Force and Weight.	4.5
4.	4. Newton's Third Law.5. Using Newton's Second Law (one example only).6. Forces of Friction.	4.5
5.	 Circular Motion and Other Applications of Newton's Laws 1. Extending the Particle in Uniform Circular Motion Model (one example only) 2. Motion in the Presence of Resistive Forces 	4.5
6.	Energy of a System1. Work Done by a Constant Force.2. Work Done by a Varying Force.3. Kinetic Energy and the Work–Kinetic Energy Theorem.	4.5
7.	 Potential Energy of a System. Conservative and Non-conservative Forces. Relationship Between Conservative Forces and Potential Energy. Conservation of Energy Power. 	4.5
8.	Linear Momentum and Collisions1. Linear Momentum.2. Collisions in One Dimension.3. The Center of Mass.4. Systems of Many Particles	4.5
9.	 Rotation of a Rigid Object About a Fixed Axis 1. Angular Position, Velocity, and Acceleration. 2. Rigid Object Under Constant Angular Acceleration. 3. Angular and Translational Quantities. 	4.5
10.	 Rotation of a Rigid Object About a Fixed Axis 4. Torque. 5. Rigid Object Under a Net Torque. 6. Calculation of Moments of Inertia. 7. Rotational Kinetic Energy. 	4.5

Table: The matrix of consistency between the content and the learning outcomes of the course.

			Cour	se Learr	ning Ou	itcomes	5		
	1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	3.1
Topic 1	V				V				V
Topic 2	V				V				V
Topic 3	V				٧				٧
Topic 4	V				V				٧
Topic 5	V				V				٧
Topic 6		V				V			٧
Topic 7		V				V			٧
Topic 8			V				V		٧
Topic 9				V				V	V
Topic 10				V				V	٧

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	First term exam	7: 8	20 %
3.	Second term exam	12:13	20 %
4.	Final exam	End of Semester	50 %

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Physics for Scientists and Engineers, 10th Edition, by Raymond A. Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning, Boston USA,ASIN : B00E6TSR92, (2019).
Supportive References	Fundamentals of Physics Extended, 12th Edition, David Halliday, Robert Resnick, Jearl Walker, Wiley, 2021.
Electronic Materials	 Blackboard. PowerPoint presentations.

 Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u> Other Learning Materials NA 2. Required Facilities and equipment 				
ltems	Resources			
facilities	Classrooms, Physics lab.			
Technology equipment	Data show or smart board.			
Other equipment	NA			

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

